
Cortex: Workflow-Aware Resource Pooling and Scheduling for
Agentic Serving

Nikos Pagonas

n.pagonas@columbia.edu

Columbia University

Yeounoh Chung

yeounoh@google.com

Google

Kostis Kaffes

kkaffes@cs.columbia.edu

Columbia University

Arvind Krishnamurthy

arvindkrish@google.com

Google & Univ. of Washington

Abstract

We introduce Cortex, a prototype workflow-aware serving plat-

form designed for agentic workloads. The core principle of Cortex

is stage isolation: it provisions dedicated resource pools for each

distinct stage of an agentic workflow. This simple yet powerful

strategy mitigates inter-stage interference in compute and memory,

leading to better KV cache utilization, higher throughput, and more

predictable performance. By customizing resource allocation and

scheduling within each distinct stage of agentic workflows, Cor-

tex lays the groundwork for more advanced, agent-native serving

paradigms, including malleable resource management, speculative

execution of workflow branches, and a shared, multi-tiered cache

for “agentic state.”

1 Motivating Example: Serving Agentic NL2SQL

Workflows

Agentic workflows pair an LLM’s reasoning with iterative tool use:

the model observes an intermediate result, thinks, calls another

tool, and repeats until the task is solved or a budget is exhausted.

This closed-loop recipe underlies our running example, a Natural-

language-to-SQL (NL2SQL) agent that turns a plain-English ques-

tion like “What were Europe’s sales last quarter?” into a successfully

executed SQL query. A production-grade NL2SQL workflow typi-

cally (i) retrieves the target schema, (ii) autoregressively generates a

candidate query, (iii) executes it, (iv) verifies the result set, and, if the

query fails, (v) fixes it and retries up to a policy-defined limit [1, 2].

Each turn may terminate in one of three ways: the query executes

correctly, it raises a syntax error, or it returns an empty result that

signals a semantic failure. The whole pipeline repeats until the

agent either satisfies the incoming NL2SQL request or exhausts its

retry budget. As shown in Figure 1, in our example workflow, we

omit the schema retrieval and verification stages for simplicity and

clarity.

Because every stage feeds directly into the next, the end-to-end

latency of this NL2SQL loop depends less on any single LLM call

than on how well the serving stack coordinates the entire chain.

Yet today’s LLM platforms remain workflow-agnostic. For exam-

ple, popular LLM serving frameworks [3, 6] treat every stage as

an isolated LLM call and schedule them in FCFS order, while LLM

agent serving platforms, like Autellix [4], use more sophisticated

prioritization to improve the throughput of the agentic AI work-

loads, but without awareness of the internal workflow structure.

HEXGEN-TEXT2SQL [5] schedules NL2SQL agentic AI workflow

requests based on their remaining deadline slack and estimated

Figure 1: NL2SQL workflow mapped to the Cortex architec-

ture. The SQL generator and SQL error fixer stages are LLM

calls, while the SQL executor runs candidate SQL queries on a

database. Cortex provisions separate and dedicated resource

pools for each stage.

execution time across a pool of LLM serving instances of varying

capabilities, blind to internal workflow stages. We argue that these

platforms leave a lot of performance on the table. They miss obvi-

ous caching opportunities; for instance, five refinement attempts

against the same schema incur five identical prompt builds and five

identical warm-cache SQL executions. They schedule LLM calls

without knowledge of the remaining workflow, oblivious to down-

stream costs (e.g., a slow SQL back-end), and thus cannot accelerate

stragglers that gate the end-to-end latency. As a result, operators

either over-provision expensive general-purpose instances or suffer

frequent SLO violations.

Goal: We propose a new workflow-aware serving platform that

starts from a call graph (tool calls, LLM calls) andmeets user-defined

SLOs by provisioning just enough resources and prioritizing re-

quests and calls accordingly.

2 Cortex: Dedicated Engine Pools Per

Workflow Stage

In this section, we present Cortex, the first prototype of such a

platform. The guiding insight behind Cortex is that a single shared

pool of “generic” LLM engines is a poor fit for agentic workflows

whose call graphs contain heterogeneous stages. Each stage (SQL



Nikos Pagonas, Yeounoh Chung, Kostis Kaffes, and Arvind Krishnamurthy

Figure 2: KV Cache usage of the NL2SQL workflow’s LLM

stages (SQL generator, SQL error fixer) when running in Cor-

tex. The total usage is significantly lower when each stage

runs in an isolated serving engine.

generation, execution, error fixing) has distinct latency profiles,

memory requirements, and caching opportunities. Worse, the graph

itself can evolve at runtime: the number of parallel explorations, the

depth of refinement loops, and the cost of each operator fluctuate

with the input and with queueing delays.

Cortex addresses this by provisioning a dedicated engine pool
for every workflow stage. An engine pool is a homogeneous set

of workers—e.g., GPUs for LLM decoding or CPU executors for

SQL—managed by a stage-local scheduler with its own queue, cache,

and scaling policy. Figure 1 sketches the architecture: client requests

enter an orchestrator that consumes a compiled call graph, com-

putes per-request SLO slack, and dispatches work to stage pools

that are then managed by an engine-allocation layer.

The orchestrator is workflow-aware: it tracks each request’s

position in the graph, predicts the next set of eligible operators, and

attaches a priority key derived from SLO slack, stage selectivity,

and expected service time. The engine-allocation layer then routes

the sub-call to a concrete pool instance that maximizes locality

(e.g., KV-cache/prompt affinity for generation; warm connections

for SQL), balances load across replicas, reorders requests based on

priorities, and enforces admission control when a stage becomes the

bottleneck. When both load and memory pressure are sufficiently

low, the orchestrator can opportunistically let compatible stages

borrow idling engines to reduce fragmentation and raise utilization.

Cortex Benefits. In this presentation, we demonstrate a straight-

forward but significant benefit of the stage isolation that is core to

Cortex’s design. Because each stage carries a distinct prompt and

exemplar set, stage isolation markedly improves KV-cache utiliza-

tion. As shown in Figure 2, the total KV footprint of the NL2SQL

LLM stages (SQL generator and SQL error fixer) is significantly

lower when each runs in its own Cortex pool: each engine holds

only its stage-specific context. In contrast, a shared engine must

keep both stages’ contexts hot on each replica, effectively duplicat-

ing KV-cache memory usage. The reclaimed GPU memory raises

effective batch size (and/or beam width) and translates directly into

higher throughput and tighter tail latency.

Cortex’s stage isolation yields additional benefits. First, it elim-

inates cross-stage interference that wrecks predictability: when

heterogeneous calls (e.g., SQL generation and error fixing) share an

engine, batching couples their runtimes, delays token emission, and

makes an LLM call’s latency depend on its batch-mates—undermining

remaining-time/SLO-aware prioritization. Isolating stages restores

stable, stage-local latency models. Second, it enables independent

scaling and provisioning: a fast monitor scales out or in only the

pool that threatens the SLO, letting us lightly provision run-once

stages like SQL generation while weighting critical-path pools for

the SQL error fixer more heavily. In NL2SQL, where per-stage vari-

ance is far smaller than end-to-end variance (dominated by variable

retry depth), this per-stage control can meet the same SLOs with

much higher efficiency.

3 Toward Agent-Native Serving

Stage isolation is only a starting point, hinting at broader still-

unrealized mechanisms needed for native agentic serving.

Malleable workflows & resources. Because agentic workflows

are malleable in both what they compute and how they run, our

platform can flex along two axes. First, the computation can shrink

to fit scarce resources: when latency approaches an SLO bound or

cluster load spikes, the planner can swap a heavyweight model for a

lighter variant, prune retries, or shorten reasoning, lowering mem-

ory pressure and generation time. Second, resources can stretch

to match a demanding computation: in fan-out patterns such as

NL2SQL, where dozens of candidate queries execute in parallel,

the scheduler can boost the straggling tail using beefier engines

with more GPUs or higher SQL concurrency, equalizing completion

times and tightening SLO variance. The two strategies interplay:

if a small-model engine is saturated yet a large-model engine sits

idle waiting for refinement, the system can opportunistically let

the larger model generate candidates itself, provided it can access

or reconstruct the necessary context. A central open challenge is

designing an interface that lets workflows declare their malleability,

i.e., what knobs (model size, parallelism, retry depth) can be tuned

and at what cost, and exposing that information uniformly to both

the planner and the scheduler.

Speculation.With their probabilistic reasoning andmany viable

next actions, LLM agents are inherently fertile ground for specu-

lation. For example, Cortex can speculate on the most probable

branches taken in a workflow and, if possible, pre-warm the associ-

ated engines or even pre-execute the next steps. Another possibility

is hedging. For example, in the NL2SQL workflow, the platform

can generate many candidate queries and evaluate them in paral-

lel instead of serially. Speculating on the next actions taken, and

preparing them or even pre-executing them, will deliver faster end-

to-end responses without waiting for the agent’s final, deterministic

choice.

Agentic State. Cortex can eventually treat intermediate data,

from KV-cache entries to fetched tool results, as a first-class, multi-

tier “agentic state”. The simplest form of caching is already imple-

mented by SGLang: each engine keeps its own prompts, schema

embeddings, and partial plans resident in GPU memory, preventing



Cortex: Workflow-Aware Resource Pooling and Scheduling for Agentic Serving

thrashing when successive calls share the same context. Above

that, a workflow-wide shared tier could act as a publish/subscribe

fabric: agents can advertise artifacts such as previously executed

SQL results or vector-search hits, and downstream calls check this

tier before recomputing or refetching. This shared tier would turn

repeated tool and LLM calls across concurrent agents into zero-cost

hits and sharply reduce both latency and compute waste.

References

[1] Bernard Chang and Wei Yih Yap. 2024. NL2SQL with BigQuery and Gem-
ini. https://cloud.google.com/blog/products/data-analytics/nl2sql-with-bigquery-

and-gemini Google Cloud Blog.

[2] Yeounoh Chung, Gaurav T Kakkar, Yu Gan, Brenton Milne, and Fatma Ozcan.

2025. Is Long Context All You Need? Leveraging LLM’s Extended Context for

NL2SQL. arXiv preprint arXiv:2501.12372 (2025).
[3] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,

Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient Memory

Management for Large Language Model Serving with PagedAttention. In Proceed-
ings of the 29th Symposium on Operating Systems Principles (Koblenz, Germany)

(SOSP ’23). Association for Computing Machinery, New York, NY, USA, 611–626.

doi:10.1145/3600006.3613165

[4] Michael Luo, Xiaoxiang Shi, Colin Cai, Tianjun Zhang, Justin Wong, Yichuan

Wang, Chi Wang, Yanping Huang, Zhifeng Chen, Joseph E. Gonzalez, and Ion

Stoica. 2025. Autellix: An Efficient Serving Engine for LLM Agents as General

Programs. arXiv:2502.13965 [cs.LG] https://arxiv.org/abs/2502.13965

[5] You Peng, Youhe Jiang, Chen Wang, and Binhang Yuan. 2025. HEXGEN-

TEXT2SQL: Optimizing LLM Inference Request Scheduling for Agentic Text-

to-SQL Workflow. arXiv preprint arXiv:2505.05286 (2025).
[6] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang,

Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al.

2024. Sglang: Efficient execution of structured languagemodel programs. Advances
in neural information processing systems 37 (2024), 62557–62583.

https://cloud.google.com/blog/products/data-analytics/nl2sql-with-bigquery-and-gemini
https://cloud.google.com/blog/products/data-analytics/nl2sql-with-bigquery-and-gemini
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2502.13965
https://arxiv.org/abs/2502.13965

	Abstract
	1 Motivating Example: Serving Agentic NL2SQL Workflows
	2 Cortex: Dedicated Engine Pools Per Workflow Stage
	3 Toward Agent-Native Serving
	References

